
Notes 8.370/18.435 Fall 2022
Lecture 30 Prof. Peter Shor

Last time we talked about the quantum Hamming code. This was based on the
classical Hamming code. We have two matrices, G and H , with

G =


0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1
1 1 1 1 1 1 1

 and H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


The quantum error correcting code they generated mapped |0〉 to

|0〉L =
1√
8

∑
x∈H
|x〉 ,

and mapped |1〉 to

|1〉L =
1√
8

∑
x∈H
|x⊕ 1111111〉 .

Recall that a classical binary linear code is a subspace of Zn
2 . If the minimum non-

zero codeword has Hamming weight d, then the code is said to have distance d. Recall
that a code with distance d can correct up to t = d−1

2 errors. A code that maps k bits
into n bits and has distance d is called an [n, k, d] code. For example, the Hamming
code with generator matrix G is a [7, 4, 3] code, and the code with generator matrix H
is a [7, 3, 4] code.

A CSS code is a quantum error-correcting code that is derived from two classical
codes, C1 and C2, with C2 ⊆ C1. We will call this code CSS(C1 : C2). If C1 can
correct t1 errors and C⊥2 , the dual code to C2, can correct t2 errors, then CSS(C1 : C2)
can correct t1 bit-flip errors and t2 phase-flip errors.

Let me remark that one can consider a quantum error-correcting code to either be
a collection of codewords or the subspace generated by these words. Since quantum
error-correcting codes must correct superpositions of codewords as well as the code-
words themselves, they must correct every quantum state in the subspace. For CSS
codes, it doesn’t really matter which of these perspectives you use, but for some other
quantum error-correcting codes, the subspace view is a more intuitive way to think
about it.

Before we give the definition of a quantum CSS code, we need to define a few
terms in classical error correcting codes. If C2 ⊆ C1, a coset of C2 in C1 is the set of
vectors

x+ C2 = {y|y = x+ c, c ∈ C2}

for some x ∈ C1. Two cosets x1 +C2 and x2 +C2 either are equal or are disjoint, and
every element x ∈ C1 is a member of some coset, so the number of cosets is |C1|

|C2| , i.e.,
the number of elements of C1 divided by the number of elements of C2.
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Why are two cosets either equal or disjoint? Suppose that y ∈ x + C2 Then
y = x+ d for some d ∈ C2. Now, if we add d to any other element in C2, we still have
an element in C2, so

y+C2 = {z|z = y+c, c ∈ C2} = {z|z = x+d+c, c ∈ C2} = {z|z = x+c, c ∈ C2} = x+C2.

For example, in the Hamming code, there are two cosets of H in G,

H and H + 1111111 .

Now, we can give the codewords of the CSS code associated with two n-bit classi-
cal codes C1 and C2 with C2 ⊂ C1. The codewords of this code will be the associated
with the cosets of C2 in C1. For each coset x+ C2, we have the codeword

|x+ C2〉 =
1

|C2|1/2
∑
c∈C2

|x+ c〉 .

The number of codewords is the number of cosets of C2 in C1, which is |C1|
|C2| . The

dimension of the code subspace is

dimCSS(C1 : C2) = log2
|C1|
|C2|

= dimC1 − dimC2

Why does CSS(C1, C2) correct t1 bit-flip errors? We know that there is a classi-
cal error-correction procedure that will correct t1 or fewer errors in any codeword c1
of C1. Now, the codewords of CSS(C1, C2) are composed of superposition of quan-
tum states |x+ c〉, each of which is a codeword of C1. Thus, applying this classical
error-correction procedure in quantum superposition will correct up to t1 bit-flip errors
in the quantum code.

We now need to explain why the dual code will correct t2 phase errors. Recall that
the dual of a subspace W of a vector space V was

W⊥ = {x ∈ V |x · w = 0 ∀w ∈W}

If you’re used to working with real and complex vector spaces, a non-intuitive fact
about binary vector spaces is that the original space and its dual can overlap. For
example, with the Hamming code above, H = G⊥ ⊂ G. Howerver, it is still true that
if W⊥ is the dual of W in vector space V , then

dimV = dimW + dimW⊥ .

We won’t prove it in these notes, but there is a proof of this along the lines of the
Gaussian elimination manipulations we did in our discussion of Simon’s algorithm.

Let’s apply the Hadamard transform to the codewords |x+ C2〉. It turns out that
what we get are superpositions of the codewords of the code CSS(C⊥2 : C⊥1 ). Before
we prove this, let me make a little side comment about why this makes sense. because
C2 ⊆ C1, any vector that is perpendicular to everything in C1 is also perpendicular
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to everything in C2, so C⊥1 ⊆ C⊥2 . Further, dimC⊥1 = n − dimC1 and dimC⊥2 =
n− dimC2, so

dimCSS(C1 : C2) = dimCSS(C⊥2 : C⊥1 ) .

Now, let’s show that the Hadamard transform of a codeword |x+ C2〉 of CSS(C1 : C2)
is a superposition of codewords of CSS(C⊥2 : C⊥1 ). Taking the Hadamard transform,
we find:

H⊗n |x+ C2〉 =
1√

2dimC2

H⊗n
∑

c2∈C2

|c2 + x〉

=
1√

2dimC2

1√
2n

∑
y∈Zn

2

∑
c2∈C2

(−1)(c2+x)·y |y〉

=
1√

2dimC2

1√
2n

∑
y∈Zn

2

(−1)x·y
∑

c2∈C2

(−1)c2·y |y〉

Now I claim that ∑
c2∈C2

(−1)c2·y =

{
|C2| y ∈ C⊥2
0 y 6∈ C⊥2 .

Why? if y ∈ C⊥2 , all the elements of the sum are 1, so we get |C2. If not, then there is
some d ∈ C2 such that (−1)d·yi = −1, and we can pair the elements of C2 into pairs
(c2, c2 + d). Since (−1(c2+(−1)c2+d = 0, the sum for each of these pairs is 0, so the
whole sum is 0. Thus, we have

H⊗n |x+ C2〉 =
1√

2dimC2

1√
2n

∑
y∈C⊥

2

(−1)x·y|C2| |y〉

=

√
2dimC2

√
2n

∑
y∈C⊥

2

(−1)x·y |y〉

=
1√

2dimC⊥
2

∑
y∈C⊥

2

(−1)x·y |y〉

Now, we are nearly done. We claim that if y1 and y2 are in the same coset of C⊥1 in
C⊥2 , then (−1)x·y1 = (−1)x·y2 . Why is this? Because y1 − y2 ∈ C⊥1 and x ∈ C1, so
x · (y1 − y2) = 0. So now let R be a set of representatives of the cosets of C⊥1 in C⊥2 ;
this means there is one element of each coset in R. We can group the sum over y above
into elements from each coset of C⊥1 in C⊥2 . This gives

H⊗n |x+ C2〉 =
1√

2dimC⊥
2

∑
y∈R

(−1)x·y
∑

z∈y+C⊥
1

|z〉

=

√
2dimC⊥

1√
2dimC⊥

2

∑
y∈R

(−1)x·y
∣∣y + C⊥1

〉
,

showing that the Hadamard transform of a codeword in CSS(C1 : C2) is a superposition
of codewords in CSS(C⊥2 : C⊥1 ), as we wanted.
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The last thing I want to talk about in these notes is shifting a code. We will need this
definition for the proof of the security of BB84, which we present in the next lecture.
We can take a CSS code and shift it in bit space or in phase space. A codeword for a
code shifted by s in bit space is

|x+ C2〉 =
1

|C2|1/2
∑
c∈C2

|s+ x+ c〉

and one shifted by t in phase space is

|x+ C2〉 =
1

|C2|1/2
∑
c∈C2

(−1)t·(x+c) |x+ c〉

And of course, you can shift in phase space and bit space (the order makes a difference)
to get

|x+ C2〉 =
1

|C2|1/2
∑
c∈C2

(−1)t·(x+c) |s+ x+ c〉

All of these shifted error correcting codes can correct the same number of errors as
the unshifted ones. What we will need to know for the proof of security of quantum key
distribution is that if you shift in both bit space and phase space by a random vector,
and average over the resulting codes, you get the completely uniform distribution —
the density matrix is I2n . I’m not going to prove that in these lecture notes, but if you
want to prove it, it would make a good exercise to make sure you understand CSS codes
well.
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