Notes 8.370/18.435 Fall 2022
Lecture 18 Prof. Peter Shor

On Friday, we covered Simon’s algorithm. Simon’s algorithm is a quantum algo-
rithm that solves Simon’s problem. This isn’t a problem that arose from any practical
application, but a problem that was invented to show that quantum computers could be
faster than classical computers.

What is Simon’s problem? We are given a function f that maps length-n binary
strings to length-n binary strings. This function has the property that it is 2-to-1, and
that there is some binary string c such that

f(z)=flz®c)

where @ is bitwise exclusive or. For example, such a function might be

£(000) =101 £(100) = 011
£(001) =010 f£(101) = 100
£(010) = 011 f£(110) = 101
£(011) =100 f(111) = 010

Simon’s problem is to find ¢, which is 110 in the above example.

How can we find ¢? First, let’s look at classical algorithms for the problem. If we
find two function inputs 1 and 5 so f(x1) = f(x2), then ¢ = x1 @ x2. How can we
do this? The obvious way is to try inputs at random until we find such a pair.

Let’s try an example. By symmetry, it doesn’t matter which input we test first, so
let’s try 000. And let’s try 001 for the second input. We’ve discovered two function
values 101 and 010, and because these are different, can conclude that ¢ # 001.

Now, let’s try f(010). This gives another distinct output, and now we can see that
f is not

000 ® 001 = 001
000® 010 = 010
001 ® 010 = 011

Let’s try one more input value. if we choose 011, we won’t eliminate any possible
values of c. but if we try 101, we will eliminate three more values of c,

000 ® 101 = 101
001 @ 101 = 100
010101 =111

So the most number of values we can eliminate on the jth call to the function is j — 1.
This means after ¢ function evaluations, we have eliminated at most

: _ =1

possible valued of c.

This says to be sure of finding ¢, we need t(t — 1)/2 = 2" — 1, or t ~ 2("+1)/2,

Now, let’s think about randomized algorithms. Suppose that f is a random function
with Simon’s property. Before we’ve found c, the value of c is equally likely to be any
of the values that we have not yet eliminated. Thus, for us to have a fifty percent chance
of finding ¢, we need to eliminate roughly half the possible values of ¢, which gives
t2 ~ 2771, So the median running time of the best randomized classical algorithm for
this problem is somewhere around 2"/,

What about a quantum algorithm for this problem? Before we can give the quantum
algorithm, we need to say how the function is given to the quantum computer. We will
use an oracle Oy that behaves as

Oflzy|z) = |2) [z @ f(=)).

If z = 0, then the function computes f(z) in the second register. We arrange the
oracle this way so that it will be reversible, because functions on quantum computers
have to be reversible.

Also recall that the Hadamard transform H®" takes a binary string |5) of length n
to a superposition of all binary strings of length n:

2" —1

")) = 3 (7% k)

k=0

We can now give Simon’s algorithm. We start with two registers of n qubits each,
initialized in the state |0™):
07107

We now apply a Hadamard transform to the first register:
2" -1

1 ~ nn
on/2 Z 17710"),
j=0

where |j) is the representation of the integer j in binary. We next apply the function
Ofi
T
o2 Z 1) -
j=0
Now, we apply another. Hadamard transform to the first register:
] 2ot 2 _] 2net 2 _
- <2<nﬂm)ﬂm=% <2<n”)@wm
i—0 \ k=0 k=0 \ j=0

And finally, we measure the registers (although we will only use the result from the
first register).

|0

|0

= & E EE
= & E EE
N RN R

To analyse the algorithm, we need to compute the probability of seeing a pair of
values |k) |f(7)) in the registers. This will be equal to the square of the amplitude on
this state. First, note that there are only two values of j that will produce f(j); these
are j and j @ c. So there are only two terms in the sum over j that contribute to this
amplitude, and the amplitude is:

((_1)j-k + (_1)(j®c)-k) .

We now use the distributive law (r @ s) -t =r -t @ s - t, and we get

1
27),

% ((*l)j-k + (—1)(j®c).k) _ 2% ((71)j.k + (71)j~k@c~k)
= o (17 (171
1

- e (I (14 (D))

Butif ¢ - k = 1, this expression is 0, and if ¢ - k = 0, this expression is iz%. We
thus have that the probability of seeing a value k is 0 if ¢ - k = 0, that is, if k£ is not
perpendicular to ¢, and 22% if k is perpendicular to c.

This lets us use linear algebra over Zs to find c. Suppose we repeat the process

above to find n — 1 linearly independent vectors perpendicular to c. If you have n — 1

vectors in an n-dimensional space, there is only one vector perpendicular to them. This
is ¢; all we need to do is find it.

Linear algebra over a finite field (like Z-) is different in several ways from linear
algebra over R or C. The most significant difference is that a vector can be perpen-
dicular to itself; for example, 1010011 - 1010011 = 4 = 0 (mod 2). However, many
of the techniques and theorems of linear algebra over Z, are the same as those over
C. Rather than explaining the differences in detail, I’ll just demonstrate how we find ¢
for an example. It should be straightforward to deduce the general algorithm from the
example, and you should be able to see why it always works.

Suppose we have some vectors perpendicular to c. First, we need to check that they
are all linearly independent (or eliminate the linearly dependent ones, if there are any).
We use Gaussian elimination. Let’s say we have the vectors

k1 = 11011
ko = 01011
ks = 01111
ks = 11010.

Our first step will be to make the first column all 0’s, except for the top row. We can do
this by subtracting (i.e., XORing) the first row with any row that begins with 1. This
gives k) = kyq @ kq, and we have:

ki = 11011
ks = 01011
ks = 01111
K, = 00001 .

Now, we do the same for the second column, for all rows below the 2nd row. This gives
4 = ks @® k2, and we have:

ki = 11011
ks = 01011
ki = 00100
K, = 00001 .

Now we’re done, because this matrix is in row-echelon form, and we see that the orig-
inal four vectors were linearly independent. However, in general we might have to use
this procedure on all the columns.

What we do now is figure out which vector is perpendicular to all these rows.
Looking at the last row, k/j, we see that the last coordinate of ¢ must be 0, so ¢ =77770.
We don’t have any rows of our matrix that start 00017, which means that the fourth
coordinate isn’t constrained—it could be either 0 or 1. if we take it to be 0, we will
end up with the O vector, so we take it to be 1, and we have ¢ =77710. Now, the
fact that ¢ must be perpendicular to &% means that the third coordinate is 0, so we get
¢ =77010. Making c perpendicular to the second row, ks, gives ¢ =71010, and making

it perpendicular to the first row gives ¢ = 01010. And indeed, you can check that
¢ = 01010 is perpendicular to every row in our first matrix.

Note that in general, if you have n — 1 linearly independent vectors perpendicular
to ¢, and you carry out this procedure, all but one of the coordinates of ¢ will be deter-
mined by a row in the row-echelon matrix, and this procedure will give you a unique
non-zero vector c.

How long does this algorithm take? That is, how many vectors will we have to
sample to find n — 1 vectors that are linearly independent. For the first step, there
is only one vector that is linearly dependent (000 . ..0), and there are 2" ! possible
vectors perpendicular to c. Our calculations showed that we find each of them with
equal probability, so the probability of the first vector not being linearly independent is
2"%1. On the second step, there are two vectors that are not linearly independent (k;
and 0), so the probability of the second vector not being linearly independent is W%Q
And in general, the probability that the ith vector is linearly dependent on the first i — 1
is QTL% All of these probabilities are less than % so the expected number of tries it
takes to get a linearly independent vector on the ith step is at most %, and we see that
the expected number of steps is less than 2n. Since each step takes O(n) time, the total
time taken is O(n?). This contrasts with the expected running time of at least 27/2 for
the classical algorithm, giving an exponential advantage for quantum computation.

In fact, with a more clever analysis you can show that the expected number of steps
is always less than n + 2.

Now, let’s look at the circuit for Simon’s algorithm more closely. You will notice
that we first do a Hadamard transform on the first register. We then computer take the
value of |z) in the first register and compute |f(x)) in the second register. However,
we never look at the second register again. I don’t know how many of you know about
optimizing compilers, but a classical optimizing compiler would look at this circuit,
and ask: why are you computing f(z) in the second register if you never look at the
value again? (And in fact, this was one of the questions that was asked in class on
Friday.) So why is the computation of the oracle necessary for the algorithm?

It is easy to see that it is necessary; without the oracle, you would just be applying
an H gate to each wire in the first register, and then applying another H gate to these
wires. Since H? = I, we would have a circuit that did nothing. But how can computing
the value of | f(x)) in the second register change the values of the first register. This is
an example of a process called back action.

Back action is a fundamental principal of quantum mechanics. It says that any time
two systems interact, if the first system has an effect on the second, then the second
also has an effect on the first. Maybe for this course, the best illustration of back action
is the CNOT gate.

Recall that the Hadamard gate has the following properties:

H? =1
Ho,H =0,
Ho,H =0,

Now, we will deal with an identity involving CNOT and Hadamard gates. First,

let’s consider the CNOT gate, and input the state |—) |—). What happens?

= 1= = 510> = 1)) (10> = 1))

= 2(|00>—|01>—|10>+|11>)

So because CNOT|10) = |11) and CNOT|11) = |10}, we get

| = Do =

1

N = N

CNOT%(|OO> —101) — |10y + [11)) (100y — [01) — [11) + [10))

(10> + 1) (1) = [1)) = [+)]-)-

Here, the target qubit has stayed the same and the control bit has changed. This is
the opposite of what you might think should happen. Classically, when you apply an
“if” statement on variable A, and use the results to modify variable B, then variable A
doesn’t change. Here, a CNOT looks like an “if” statement, but the value of variable A
has changed. We’ll say a little more about this phenomenon at the end of these lecture
notes.

Let’s look at the quantum circuit

What does this do? First, let’s look at a piece of this circuit: We will show that

If the top wire starts in |0), the CNOT acts as identity on the bottom wire, and we
get HH = [. If the top wire starts in |1), the CNOT acts as a o, on the bottom wire,
and we get Ho, H = o,. Thus, the above circuit is a controlled o, or a C-Z.

We can make this substitution in our original circuit, to get the equivalent circuit

However, a C-Z with the first qubit as the control and the second qubit as the target
is the same as a C-Z with the second qubit as the control and the first qubit as the
target. You can see this by noticing that the action on the two qubits is symmetric—a
phase of —1 is applied if and only if the state is |11). You can also see this by matrix

multiplication. You can compute the action of the gate with the qubits swapped using
SWAP - C-Z - SWAP = C-Z where

1 0 0 0 1 00 O
0 01 0 01 0 0O
SWAP = 010 0 and C-Z = 00 1 0
0 0 0 1 0 0 0 —1

Thus, the circuit is equivalent to

But we’ve just computed that this is the same as:

—69—

—_— e

So now we’ve shown that putting two H gate before and after a CNOT reverses the
direction of the CNOT:

This is actually an example of a general principle in quantum mechanics: if system
A has some effect on system B, then system B will also have an effect on system A.
The effect of system B on system A is called “back-action”. One consequence of this is
that you cannot measure a quantum system without also affecting the quantum system
being measured; in a standard von Neumann measurement, the system being measured
is projected onto one of a set of quantum states, or a set of subspaces. However, there
are more general kinds of measurement, that we won’t discuss in this class, and the
principle that there will always be a back-action still applies.

