
Notes 8.370/18.435 Fall 2022
Lecture 16 Prof. Peter Shor

Today, we covered the Deutsch-Jozsa algorithm.
Before talking about the Deutsch-Jozsa algorithm, I’m going to explain the Hadamard

transform, which is a necessary ingredient both for the Deutsch-Jozsa algorithm and Si-

mon’s algorithm, which we will do next. Recall the Hadamard gate H “ 1?
2

ˆ

1 1
1 ´1

˙

.

The Hadamard transform is simply Hbn. That is, you do a Hadamard gate on each of
n qubits.

What does Hbn do to a quantum state?
First, let’s do an easy example

Hbn |0ny “
1

2n{2
`

|0y ` |1y
˘`

|0y ` |1y
˘

. . .
`

|0y ` |1y
˘

“
1

2n{2

2n´1
ÿ

j“0

|jy .

Here, |jy means the bitstring in t0, 1un that represents the integer j in binary. For ex-
ample, if n “ 4, then |12y “ |1100y and |7y “ |0111y. When we apply the distributive
law to

`

|0y` |1y
˘`

|0y` |1y
˘

. . .
`

|0y` |1y
˘

, we get every n-bit binary string exactly
once, and so we get every integer |jy from |0y to |2n ´ 1y.

Now, what happens when we apply the Hadamard transform to an arbitrary bit
string? For example,

Hb5 |01011y “
1
?
32

`

|0y ` |1y
˘`

|0y ´ |1y
˘`

|0y ` |1y
˘`

|0y ´ |1y
˘`

|0y ´ |1y
˘

“
1
?
32

`

|00000y ´ |00001y ´ |00010y ` |00011y ` |00100y ´ . . .´ |11111y
˘

Here, for example, we see that |11111y has a minus sign in the expansion because there
are three ´’s in the five |1y terms we tensor together to get |11111y.

We see from the above that each binary string representing integers k between 0
and 31 appears in the sum with amplitude 2´n{2. The question is; what is the sign on
|ky. Let j ¨ k be the dot product of j and k, i.e., the number of places where 1s appear
in both j and k. I claim that

Hbn |jy “
1

2n{2

2n´1
ÿ

k“0

p´1qj¨k |ky .

Why do we get the phase p´1qj¨k in the sum above. Let’s look at our example above.
What would the phase on |11001y be in Hb5 |01011y? To get |11001y, we take the
|1y from the first, second, and fifth terms, and the |0y from the second and third terms.
This gives

1
?
32

`

|1y
˘`

´ |1y
˘`

|0y
˘`

|0y
˘`

´ |1y
˘

“
1
?
32
|11001y

1

We get a minus sign only when we choose a |1y (which means there is a 1 bit in that
spot in |ky) and when there is a ´ sign on the |1y (which means there is a |1y in that
position in |jy). So the number of ´ signs is just the number of places which have a
1 in both k and j. This is j ¨ k. Further, multiplying all the ´ signs together gives the
term p´1qj¨k given in our formula.

Next, we describe the Deutsch-Jozsa algorithm.
The Deutsch-Jozsa algorithm operates on a function mapping binary strings of

length n into bits. First, let’s give a couple of definitions.

Definition 1 A function is constant when fpxq “ fpyq for all x, y in Domainpfq.

Definition 2 A function is balanced when there are an equal number of inputs that
produce a 0 and that produce a 1.

For example, the function on two bits:

fp00q “ 0; fp01q “ 1 fp10q “ 1 fp11q “ 0

is balanced.
The Deutsch-Jozsa algorithm takes a function which is either constant or balanced,

and tells which it is.
How many queries to the function does it take a classical computer to solve this

problem? We will require that it solve it deterministically. This is equivalent to the
problem: you have 2n balls in an urn, and the balls are either black or white. You know
that either all the balls are the same color, or half of them are each color. How many
balls do you need to take to be know for certain which case holds?

The answer is that you need to take 2n´1 ` 1, or one more than half the balls.
Suppose you start drawing balls and you draw 2n´1 of them that are black. You can’t
know for certain that all the other balls in the urn are white, and that you were very
unlucky in which balls you chose. Thus, classically, it may take evaluating the function
on 2n´1 ` 1 different inputs to be sure you have the right answer.

Now, we will assume that the function f is given to us in the form of some circuit
or black box (we will call it an oracle) that takes

Of |xy “

#

|xy if fpxq “ 0

´ |xy if fpxq “ 1

This is a phase oracle because it encodes the information about the function in the
phase. A bit oracle computes the result of the function in a separate register.

Of |xy |0y “ |xy |fpxqy .

Here the first register has n qubits and the second has one qubit.
We will show that if you have a bit oracle for a function f , you can construct a

phase oracle for this function. It actually turns out that these two kinds of oracles are
equivalent, but we will not prove that now.

How can we construct a phase oracle if we are given a bit oracle? What we do is
first compute |fpxqy in a second register. We then apply a Z gate to this register to get
p´1qfpxq, and then uncompute |fpxqy. The quantum circuit is as below:

2

|xy
f f´1

|xy

|0y Z |0y

After the first gate, we have |xy |fpxqy. After the Z gate, we get p´1qfpxq |xy |fpxqy.
The last gate uncomputes f , so we get p´1qfpxq |xy |0y, which is the phase oracle (aside
from the work bit that ends up in the same state as it started in, and thus can be disre-
garded).

The Deutsch algorithm is fairly straightforward:

Step 1: Start with |0ny,

Step 2: Apply the Hadamard transform Hbn,

Step 3: Apply the phase oracle Of ,

Step 4: Apply the Hadamard transform Hbn,

Step 5: Measure the quantum state.

Now let’s see what happens in this algorithm. We’ve already computed much of
what we need for these manipulations in our discussion of the Hadamard transform.

Hbn |0y “
1

2n{2

2n´1
ÿ

j“0

|jy

OfH
bn |0y “

1

2n{2

2n´1
ÿ

j“0

p´1qfpjq |jy

HbnOfH
bn |0y “

1

2n

2n´1
ÿ

j“0

2n´1
ÿ

k“0

p´1qfpjqp´1qj¨k |ky

Now, let’s compute the probability of seeing the state |0ny (i.e., k “ 0) after the mea-
surement. This probability is just the square of the amplitude on the |0ny state.

This amplitude is just
1

2n

2n´1
ÿ

j“0

p´1qfpjq

because j ¨ 0 “ 0.
If f is constant, then fpjq “ 0 for all j or fpjq “ 1 for all j. The sum is then

either `1 or ´1, so the probability of seeing |0ny is 1.

3

If the function is balanced, then an equal number of`1 and´1 terms appear in the
sum

ř2n´1
j“0 p´1q

fpjq, so this sum is 0, and the probability of seeing |0ny is 0.
So if the output is |0ny, we conclude that the function is constant, and if the output

is anything else we conclude that the function is balanced. This computation takes one
call to the oracle and a linear number of gates in n, while the best deterministic clas-
sical algorithm takes around 2n{2 gates. Thus, for this problem, the best deterministic
quantum algorithm is exponentially faster.

The Deutsch-Jozsa algorithm was not a very convincing argument that quantum
computation was more powerful than classical computation. While you need around
2n{2 queries to tell with absolute certainty whether a function is balanced or constant, if
you make 20 or 30 queries, the chances that you will be wrong are very, very small. And
randomized algorithms are a well-studied area of computer science, and are generally
considered almost as good as deterministic algorithms. The reason that the Deutsch-
Jozsa algorithm is important is that it led to Simon’s algorithm, which makes a much
more convincing argument that quantum computation is more powerful.

4

