
Notes 8.370/18.435 Fall 2022
Lecture 9 Prof. Peter Shor

For the last couple of lectures, we’ve been talking about classical gates and classical
circuits. Today, we’ll start talking about quantum gates.

Recall that we can build any Boolean circuit out of AND, OR, and NOT gates.
These are one- and two-bit gates. We will show that the same thing is true for quantum
circuits—–we can build quantum circuits out of one-qubit gates and a small set of two-
qubit gates. A one-qubit gate is a 2ˆ 2 unitary matrix, and a two-qubit gate is a 4ˆ 4
unitary matrix.

We’ve discussed a nubmer of specific quantum gates before. For example, we’ve
seen the Pauli matrices

σx “

ˆ

0 1
1 0

˙

σy “

ˆ

0 ´i
i 0

˙

σz “

ˆ

1 0
0 ´1

˙

These satisfy the commutation relations:

σ2
x “ σ2

y “ σ2
z “ I

σzσx “ ´σxσz “ iσy

as well as the relations obtained from this one by cyclic permutations of x, y, and z.

σxσy “ ´σyσx “ iσz

σyσz “ ´σzσy “ iσx.

These are often abbreviated by X , Y , and Z, especially in quantum circuit diagrams.
We also saw the rotations of the Bloch sphere areound the x-, y-, and z-axes by an

angle 2θ:

Rxp2θq “

ˆ

cos θ ´i sin θ
´i sin θ cos θ

˙

,

Ryp2θq “

ˆ

cos θ ´ sin θ
sin θ cos θ

˙

,

Rzp2θq “

ˆ

e´iθ 0
0 eiθ

˙

We have Rzpπq “

ˆ

´i 0
0 i

˙

“ ´iσz and similarly Rxpπq “ ´iσx and

Rypπq “ ´iσy . Recall that a global phase does not affect the actual quantum state, so
Rwpπq is essentially the same transformation as σw, where w is x, y, or z.

Finally, there is the Hadamard gate,H “ 1?
2

ˆ

1 1
1 ´1

˙

, which rotates the Bloch

sphere around the point p 1?
2
, 0, 1?

2
q, switching the x- and z-axes. So we haveHXH “

Z and HYH “ ´Y .
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A quantum circuit is a set of quantum gates connecting qubits. We represent each
qubit as a horizontal wire, and we draw the gates connecting two qubits as a line be-
tween two wires. Time proceeds from left to right. For example, a simple quantum
circuit is given below.

Here, there are two CNOT gates (represented by a dot on the control qubit and
an XOR symbol ‘ on the target qubit, a σx gate (represented by X and a σz gate
(represented by a Z. The CNOT gate, for example, is the 4ˆ 4 matrix

CNOT “

¨

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

˛

‹

‹

‚

.

But the state space of three qubits is an 8-dimensional state space. How do we apply a
4ˆ 4 matrix to it? We take the tensor product with the other qubit. For example, in the
state space of three qubits, a CNOT with qubit 2 as the control and qubit 1 as the target
is:

I1 b CNOT2Ñ3 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,
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and a CNOT with qubit 2 as the control and qubit 3 as the target would be:

CNOT1Ñ2 b I3 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0
0 1

1 0
0 1

1 0
0 1

1 0
0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

But how do we handle a CNOT from qubit 1 to qubit 3? What we need to do is
tensor CNOT1Ñ3 with I2. This isn’t exactly representable in the standard Kronecker
form that you’ve seen for AbB, because the qubits the CNOT acts on aren’t consecu-
tive. So what do we do? One thing we can do is write down the formula for CNOT1Ñ2

and then apply a change of basis matrix that interchanges qubits 2 and 3. This gives
the formula:

CNOT1Ñ3 “
`

I1 b SWAP2,3

˘`

CNOT1Ñ2 b I3
˘`

I1 b SWAP2,3

˘

where

SWAP “

¨

˚

˚

˝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

˛

‹

‹

‚

This gives the correct answer, as does

CNOT1Ñ3 “
`

SWAP1,2 b I3
˘`

I1 b CNOT2Ñ3

˘`

SWAP1,2 b I3
˘

but it’s rather cumbersome.
An easier way to do it is to break the CNOT into 2ˆ2 blocks and tensor the identity

on qubit 2 with each of the 2ˆ 2 blocks . This is shown below:

CNOT “

¨

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

˛

‹

‹

‚

CNOT1Ñ3 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0
0 1 0 0

1 0 0 0
0 1 0 0

0 0 0 1
0 0 1 0

0 0 0 1
0 0 1 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Since we aren’t going to be representing gates on n qubits as 2n ˆ 2n matrices (for
obvious reasons), we won’t be seeing this kind of representation much. But it’s good
to know what’s going on conceptually.

Recall that we showed that AND, OR, and NOT can produce any Boolean function,
and TOFFOLI gates and NOT Gates can produce any reversible Boolean function.
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So we can ask: is there a finite set of quantum gates that will produce any unitary
transformation?

The answer to this question is “no”, for a fairly straightforward reason: there are
uncountably many unitary transformations, and only a countable number of quantum
circuits using a finite gate set. The resolution to this is that we can approximate any
unitary transformation arbitrarily well using a finite gate set, and that in fact we don’t
even need an unreasonable number of gates to do so. However, this is the Solovay-
Kitaev theorem, and the proof of this theorem is rather involved. (It’s in an appendix
to the textbook, if you want to look at it.) So what we will show is that any unitary
transformation can be produced using CNOT gates and one-qubit gates (in particular,
a limited set of one-qubit gates).

The first thing we will do is recall the Bloch sphere. Recall that Rypθq was a

rotation of θ around the y axis, and similarly for Rzpθq. Further recall that we can use
Rypθq and Rzpθq, to perform an arbitrary rotation of the Bloch sphere by applying

Rzpθ3qRypθ2qRzpθ1q,

for some angles θ1, θ2, and θ3. This isn’t quite an arbitrary unitary because Rzpθq and
Rypθq have determinant 1, so we only get determinant-1 unitaries this way. However,
we can multilply any unitary by a global phase to get a determinant-1 unitary, and
global phases have no effect on a quantum state, so this gives us an arbitrary quantum
transformation on a one-qubit state.

Our next goal will be to show that we can get controlled Rzpθq and controlled
Rypθq gates. These are

C´Rypθq “

ˆ

I2 0
0 Rypθq

˙

, C´Rzpθq “

ˆ

I2 0
0 Rzpθq

˙

.

where I2 is the 2ˆ 2 identity matrix.
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We first show how to make controlled rotations C-Rzpθq and C-Rypθq. First, how-
ever, let’s do a straightforward matrix calculation:

σxRzpθqσx “

ˆ

0 1
1 0

˙ ˆ

e´iθ{2 0

0 eiθ{2

˙ ˆ

0 1
1 0

˙

“

ˆ

eiθ{2 0

0 e´iθ{2

˙

“ Rzp´θq

Similarly,

σxRypθqσx “

ˆ

0 1
1 0

˙ ˆ

cos θ{2 ´ sin θ{2
sin θ{2 cos θ{2

˙ ˆ

0 1
1 0

˙

“

ˆ

cos θ{2 sin θ{2
´ sin θ{2 cos θ{2

˙

“ Ryp´θq

Now, consider the following circuit. If the first qubit is a | 0y, then we haveRzp´θqRzpθq

applied to the second qubit, and these two operations cancel each other out. Now, sup-
pose the first qubit is a | 1y. Recall that a CNOT is also a controlled σx. So if the first
qubit is | 1y, we have Rzpθq applied to the second qubit, followed by σxRzp´θqσx.
This is Rzpθq, which when multiplied by the first Rzpθq gives Rzp2θq. We thus have a
circuit for a C-Rzp2θq.

The same circuit with Rzpθq replaced by Rypθq gives the C-Ryp2θq.
We now show how to make an arbitrary controlled unitary on two qubits. A C-U

gate applies the identity to the target qubit if the control qubit is | 0y and applies U to
the target qubit if the control qubit is | 1y. That is, it is the matrix

¨

˚

˚

˝

I2
0 0
0 0

0 0
0 0

U

˛

‹

‹

‚

where the control qubit is the first qubit and the target qubit is the second one, and I2
is the 2ˆ 2 identity matrix.
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Now, how can we apply C-U for an arbitrary one-qubit unitary U . Recall that
we can express U as Rzpθ3qRypθ2qRzpθ1q for appropriately chosen θ1, θ2, and θ3.
Similarly

C-U “ C-Rzpθ3qC-Rypθ2qC-Rzpθ1q.

This gives the implementation of C-U for an arbitrary one-qubit U .
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