
Notes 8.370/18.435 Fall 2022
Lecture 3 Prof. Peter Shor

Last time, we started talking about quantum mechanics. We mentioned the princi-
ple that: Isolated quantum systems evolve unitarily. That is, for an isolated system (one
that does not interact with its environment), there is a unitary matrix Ut such that if we
let the system alone for time t, |Ψty “ Ut |Ψ0y, where the initial state of the system is
|Ψ0y and ehe final state of the system is |Ψty.

Unitary matrices U are the complex analog of rotation matrices, also called orthog-
onal matrices; they take unit length complex vectors to unit length complex vectors. A
matrix is unitary if and only if U :U “ I . (An equivalent condition is UU : “ I .) Here
U : is the complex conjugate transpose of U (also called the Hermitian transpose). We
mentioned three specific unitary matrices last time, the Pauli matrices:

σx “

ˆ

0 1
1 0

˙

, σy “

ˆ

0 ´i
i 0

˙

, σz “

ˆ

1 0
0 ´1

˙

.

We discussed the representation of spin- 12 states on the Bloch sphere, and we looked at
the actions of the Pauli matrices on the Bloch sphere, these being 180˝ rotations around
the x-, y-, and z-axes, respectively. .

Today, we’ll be talking about how unitary matrices arise in quantum mechanics,
and then talk more about the Bloch sphere and rotations on the Bloch sphere.

So suppose you want to build a quantum computer, and you want to implement
a unitary matrix U . What do you do? There’s no magic incantation that takes the
state directly from |ψy to U |ψy. In fact, quantum unitary evolution can only changes
quantum states continuously, and not in discrete jumps.

To explain how to implement a unitary gate, first I need to say something about
quantum mechanics. Quantum mechanics assumes that isolated systems evolve ac-
cording to Schödinger’s equation,

i~
d

dt
|ψptqy “ H |ψptqy .

Here ~ is a very small physical constant, |ψptqy is the quantum state at time t, and H
is a Hamiltonian—a Hermitian1 matrix, to be exact, which can be associated with a
Hermitian quadratic form that takes the quantum state as input and outputs its energy.

If we assume that H is constant, we can solve this equuation:

|ψptqy “ e´iHt{~ |ψp0qy

Let’s assume that the eigenvectors of H are | ξ1y, | ξ2y, . . ., | ξdy, with λi be the
eigenvalue corresponding to | ξiy. What the above equation means is that if the intial
state |ψp0qy is

ř

i αi | ξiy, then

|ψptqy “
ÿ

i

e´λit{~αi | ξiy .

1A Hermitian matrix is one that satisfies M “ M:.
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We’re not actually going to be using Schrödinger’s equation until much later in the
course. I’m introducing it now to give you some idea as to how you might implement
unitary gates in practice, and to motivate the next thing I’ll be talking about, which is
three one-qubit gates which are rotations of the Bloch sphere by an angle θ. These are

Rxpθq “ e´iθσx{2,

Rypθq “ e´iθσy{2,

Rzpθq “ e´iθσz{2,

What are these rotations? We have Rzpθq “ e´iθσz{2. To exponentiate a diagonal
matrix, we can simply exponentiate each of the elements along the diagonal This gives

Rzpθq “ e´iθσz{2 “

ˆ

e´iθ{2 0

0 eiθ{2

˙

“ e´iθ{2
ˆ

1 0
0 eiθ

˙

.

You can check that if θ “ π{2, this is a rotation of a π{2 angle around the z-axis
(multiplied by a global phase) and if θ “ π, this is a rotation of π around the z-axis
(again multiplied by a global phase). So this gives us rotations around the z axis of an
arbitrary angle.

To compute Rypθq, we could diagonalize it to get D “ U :RypθqU , and then ex-
ponentiate D to get Rypθq “ UeDU :. We will compute it using a different method, to
show how this method works. What we do is use a Taylor expansion.

e´iθσy{2 “ I´i
θ

2
σy´

1

2

ˆ

θ

2

˙2

σ2
y`i

1

3!

ˆ

θ

2

˙3

σ3
y`

1

4!

ˆ

θ

2

˙4

σ4
y´i

1

5!

ˆ

θ

2

˙5

σ5
y`. . .

Since σ2
y “ I , we have

e´iθσy{2 “ I ´ i
θ

2
σy ´

1

2

ˆ

θ

2

˙2

I ` i
1

3!

ˆ

θ

2

˙3

σy `
1

4!

ˆ

θ

2

˙4

I . . .

“ I

˜

1´
1

2

ˆ

θ

2

˙2

`
1

4!

ˆ

θ

2

˙4

´ . . .

¸

´ iσy

˜

θ

2
´

1

3!

ˆ

θ

2

˙3

`
1

5!

ˆ

θ

2

˙5

´ . . .

¸

“ I cos
θ

2
´ iσy sin

θ

2

But ´iσy “
ˆ

0 ´1
1 0

˙

, so we see that

e´iθσy{2 “

ˆ

cos θ2 ´ sin θ
2

sin θ
2 cos θ2

˙

,

which we see is a rotation in the x´ z plane. Looking at its action on the states of the
Bloch sphere, it rotates the Bloch sphere around the y-axis by an angle of θ.

We can similarly see that

e´iθσx{2 “

ˆ

cos θ2 ´i sin θ
2

´i sin θ
2 cos θ2

˙

,
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Now that we haveRypθq andRzpθq, we can perform any one-qubit unitary by applying

Rzpθ3qRypθ2qRzpθ1q.

To see this, let us visualize what this does to the Bloch sphere. We first rotate the Bloch
sphere by an angle of θ1 around the north pole. The second rotation moves the north
pole down to an arbitrary longitude. Finally, by applying Rzpθ3q, we can move the
north pole to end up at an arbitrary latitude. Combined, these give an arbitrary rotation
of the Bloch sphere. See the figure

Figure 1: Performing an arbitrary rotation by using three rotations, around the z-axis,
the y-axis, and the z-axis.

We now explain one way to find the quantum state |φpy corresponding to a point p
on the Bloch sphere. There are other ways to do this, which lead to simpler expressions;
we may revisit this question later in the term and explain them.

Suppose we have a point p “ ppx, py, pzq on the Bloch sphere pi P R. Since it’s on
a unit sphere, we must have p2x ` p

2
y ` p

2
z “ 1. Let us consider the 2ˆ 2 matrix

Mp “ pxσx ` pyσy ` pzσz,

Since σx, σy , σz are Hermitian matrices,Mp must also be Hermitian, that isMp “M :
p .

Now,

M2
p “ pp

2
x ` p

2
y ` p

2
zqI ` 2pxpypσxσy ` σyσxq ` 2pypzpσyσy ` σzσyq ` 2pxpzpσxσz ` σzσxq “ I.

where the last equality follows from the facts that the vector p has length 1 and σaσb “
´σbσz if a ‰ b.

We can also show that

TrMp “ pxTrσx ` pyTrσy ` pzTrσz “ 0,

since the Pauii matrices all have trace 0. Since M2
p “ I , its eigenvalues have to be

˘1. And since its trace is 0, one of its eigenvalues has to be 1 and the other has to
be ´1. Now, we will let the eigenvector with eigenvalue `1 be the corresponding
quantum state |ψpy to point p on the unit sphere. We already know this holds for the
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unit vectors on the x, y, and z axes. Note also that since Mp is a Hermitian matrix its
two eigenvectors are orthogonal, and since Mp “ ´M´p, the ´1 eigenvector of Mp is
the point antipodal to |φpy.

Let’s illustrate this by an example. Let p “
´

1?
2
, 0, 1?

2

¯

. Then

Mp “
1
?

2

ˆ

1 1
1 ´1

˙

.

Now, Mp has eigenvalues 1 and ´1, and its eigenvectors are
a

2`
?

2

2
| 0y `

a

2´
?

2

2
| 1y and ´

a

2´
?

2

2
| 0y `

a

2`
?

2

2
| 1y ,

where the first eigenvector has eigenvalue `1 and the second ´1.
These vectors are in fact just

cos
π

8
| 0y ` sin

π

8
| 1y and ´ sin

π

8
| ´y ` cos

π

8
| 1y .

This makes sence, because the point p “ 1?
2
p1, 0, 1q is halfway between p “ p1, 0, 0q

and p “ p0, 0, 1q, and these points correspond to cos π4 | 0y` sin π
4 | 1y and cos 0 | 0y`

sin 0 | 1y, respectively.
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